首页 / 学术中心 / 论文 / 基于深度卷积特征的露天矿卡车装载状况识别技术研究

全文下载
在线阅读
2021年第10期
2021-10-11
54

基于深度卷积特征的露天矿卡车装载状况识别技术研究

  • 作者:

    阮顺领
    景莹
    卢才武
    顾清华
    张雪飞
  • 关键词:

    露天矿卡车
    装载状况
    深度卷积特征
    图像识别
    深度学习
  • 作者单位:

    西安建筑科技大学 资源工程学院
    西安建筑科技大学 管理学院
    内蒙古广纳煤业集团

摘要

  • 摘要
  • 论文图表
  • 引用格式
  • 相关文章
摘要:

针对露天矿车辆运输过程中运载量管控受人为及环境等因素干扰较大,存在轻车跑票和人为套票等不利于生产管理的问题,提出了一种基于深度卷积特征的车辆装载状况识别方法。该方法通过构建试验数据集和对卷积神经网络AlexNet模型迁移学习,完成对露天矿卡车装载状况图像深度卷积特征的提取,并基于支持向量机多分类模型,实现对卡车装载状况的自动识别,在此基础上统计露天矿车队运载工作量。试验过程中,基于同一组试验数据集分别对GoogLeNet、ResNet、SqueezeNet、DenseNet模型进行迁移学习,提取卡车装载状况图像深度卷积特征,并使用同一支持向量机多分类模型对卡车装载状况进行自动识别。结果表明,在空间资源和时间资源约束下,迁移学习后的AlexNet模型在5种卷积神经网络中总体性能表现最佳,用其提取的图像深度卷积特征在卡车装载状态识别中准确率最高。相比于传统的人工设计图像特征,该方法能够更好地完成露天矿卡车装载状况自动识别任务,试验数据集的识别准确率达到97%以上,在此基础上对露天矿车队运载工作量进行统计,可有效鉴别露天矿卡车的实际装载状况,提高露天矿卡车运载的吨公里生产效率,有效解决露天矿山车辆运载工作量的管控问题。

阮顺领,景莹,卢才武,等.基于深度卷积特征的露天矿卡车装载状况识别技术研究[J].煤炭科学技术,2021,49(10):167-176. RUAN Shunling,JING Ying,LU Caiwu,et al.Study on recognition technology of truck loading condition in open-pit mine based on deep convolutional features[J].Coal Science and Technology,2021,49(10):167-176.

投审稿平台

最新论文